PRESENTACIÓN NORMATIVAS

Seguridad en fase de estructuras

22 de marzo 2018 Barcelona

Organiza:

PRESENTACIÓN NORMATIVAS

ÍNDICE DE CONTENIDOS

PUNTALES TELESCÓPICOS DE ACERO

NTP 719 UNE-EN 1065

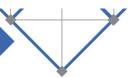
CIMBRAS DE CARGA

NTP 1069 y NTP 1070 UNE-EN 12812

NE-EN 12813

ACCIONES DURANTE LA EJECUCIÓN UNE-EN 1991-1-6

OTRAS NTP ENCOFRADOS



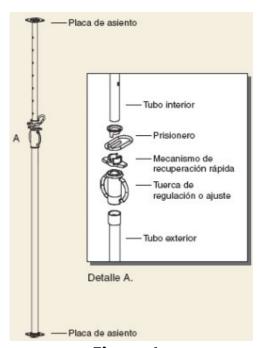
NTP- NOTAS TÉCNICAS DE PREVENCIÓN

SON GUÍAS DE BUENAS PRÁCTICAS. SUS INDICACIONES NO SON OBLIGATORIAS SALVO ESTÉN RECOGIDAS EN UNA NORMA VIGENTE

Jornada divulgativa

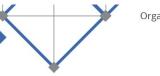
Seguridad en fase de estructuras

Organiza:



Colabora:

DEFINICIÓN, CLASIFICACIÓN Y UTILIZACIÓN



-Clasificados de acuerdo con su resistencia característica nominal y su longitud de extensión máxima. Longitudes entre 1 y 6 metros.

Colabora:

Figura 1

Seguridad en fase de estructuras

FACTORES DE RIESGOS

- -Carga excesiva por puntal
- -Desplazamiento horizontal de la carga por:
 - -Mal arriostramiento del encofrado
 - -Esfuerzos laterales por puntal mal aplomado (Figura 2)
 - -Puntal sometido a esfuerzos laterales (Figura 3)
 - -Puntales instalados sobre apoyos inestables (Figura 4)
 - -Dobles apuntalamientos (Figura 5)
 - -Golpes o choques de equipos móviles

Figura 2

Figura 3

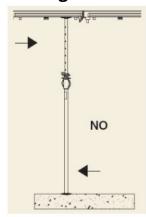


Figura 4

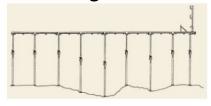
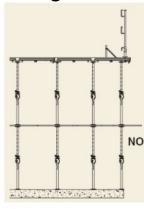
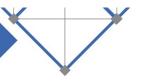
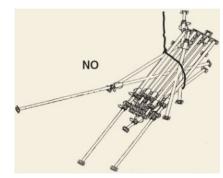




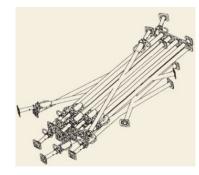
Figura 5

Seguridad en fase de estructuras

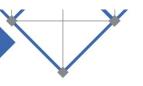
Organiza:

Colabora:




FACTORES DE RIESGOS

-Caída de puntales en operaciones de elevación, carga y descarga

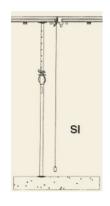


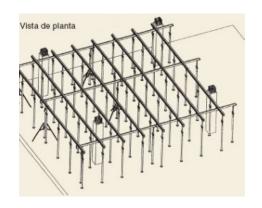
-Caída de puntales en operaciones de almacenamiento

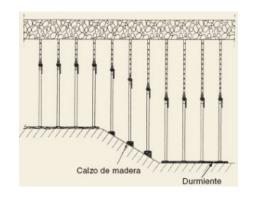
-Golpes, atrapamiento manos, lesiones y cortes, sobreesfuerzos

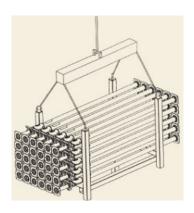
Seguridad en fase de estructuras

Organiza


Colabora:






MEDIDAS DE PROTECCIÓN COLECTIVA

- -La D.F. debe tener en cuenta las especificaciones del fabricante de los puntales utilizados así como la EHE-08.
- -Queda a criterio de la D.F. la elección del tipo más adecuado a cada caso concreto. Debe tenerse en cuenta:
 - -El peso del forjado.
 - -La altura libre entre plantas.
 - -El puntal elegido deberá tener a su altura, una carga de utilización mayor o igual al peso a soportar.

Jornada divulgativa

Seguridad en fase de estructuras

Organiza

Colabora:

OBJETO Y APLICACIÓN

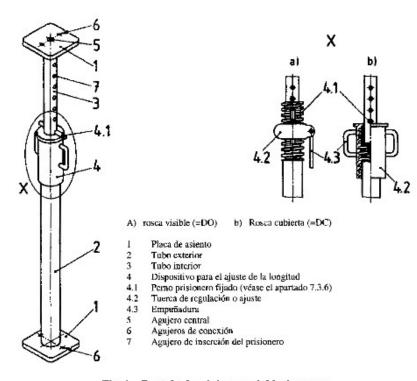
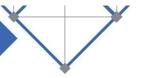



Fig. 1 - Puntal telescópico regulable de acero

Seguridad en fase de estructuras

Organiza:

DENOMINACIÓN

CLASIFICACIÓN

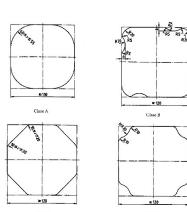
Tabla 2 Clasificación

Puntal EN 1065 - B 25 / 13 - SHO - DO - F4 - 3 - M
Descripción
Nº de la norma europea
Clasificación según la tabla 2
Longitud de extensión mínima en decímetros (redondeada al número entero superior)
Placas asiento con conformación "SH" según el apartado 7.5, carentes de horquilla "O" según el apartado 7.6 (denominaciones posibles: SHO, SH1, SH2, SQO, SQ1, SQ2)
Tipo de dispositivo para el ajuste de la longitud con rosca visible "DO", según la figura 1.a) (denominaciones posibles: DO o DC)
Método de protección contra la corrosión completado por galvanización en caliente: f ² 4, véase la tabla 3
Adecuado para la fijación de rácores según la Norma Europea EN 74 con tubos de acero de acuerdo con el proyecto de Norma Europea pr EN 39, con un espesor nominal de pared "3" mm como mínimo
Tipo de nivel de inspección "M" de la producción habitual, véase el anexo E (informativo).

Clase	Longitud de extensión máxima	Resistencia característica nominal (véase el capítulo 8)
	I _{mix}	$R_{y,k}$
	m	kN
A 25	2,50	20,4
A 30	3,00	17,0
A 35	3,50	14,6
A 40	4,00	12,8
В 25	2,50	27,2
B 30	3,00	22.7
B 35	3,50	19,4
B 40	4,00	17.0
B 45	4,50	15,1
B 50	5,00	13,6
В 55	5,50	12,4
C 25	2,50	40,8
C 30	3,00	34,0
C 35	3,50	29,1
C 40	4,00	25,5
C 45	4,50	22.7
C 50	5,00	20,4
C 55	5,50	18,6
D 25	2,50	
D 30	3,00	
D 35	3,50	
D 40	4,00	34,0
D 45	4,50	
D 50	5,00	
D 55	5,50	
E 25	2,50	
E 30	3,00	
E 35	3.50	
E 40	4,00	51,0
E 45	4,50	10.535
E 50	5,00	
E 55	5,50	

Seguridad en fase de estructuras

Colabora:

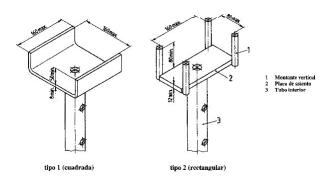

PROTECCIÓN CONTRA CORROSIÓN

PLACAS DE ASIENTO

HORQUILLAS CABEZA

Tabla 3 Métodos de protección contra la corrosión

Nivel de acabado	Componentes del puntal	Protección contra la corrosión		
FI	Tubos con placas de asiento Tuerca de ajuste	Pintado exterior sin control de la cafidad		
	Empuñadura Rosea Prisionero y fijación	Color propio o protegido sin control de la calidad		
F2	Tubos con placas de asiento Tuerca de ajuste Empuñadura Rosca	Pintado exterior de acuerdo con el proyecto de Norma Europea pr EN 39		
	Prisionero y fijación	Pintado sin control de calidad		
F3 ⁽⁾	Tubos Placas de asiento Rosca	Capa de cine de 15 μm, como mínimo, antes de la fabricación		
	Tubo, rosca y placas de asiento soldadas	Capa de cinc de 15 µm mínimo después de la fabricación		
	Tuerca de ajuste Empuñadura Prisionero y fijación	Capa de cinc de 15 μm mínimo		
F4	Tubos con placas de asiento Tuerca de ajuste Empuñadura Rosca ²¹	Galvanizado por inmersión en caliente después de la fabricación, según pr el proyecto de Norma Europea EN 39		
	Prisionero y fijación	Capa de cinc de 15 µm mínimo		
F5	Todos los componentes del puntal	Dispositivo especial		


Serve Contracts

 $Fig,\,4-Formas\ de\ las\ placas\ de\ asiento\ perfiladas\ (SH)\ para\ puntales\ de\ distintas\ clases$

Tabla 4 Dimensiones de las horquillas de cabeza

Tipo	Espesor mínimo de la placa de asiento	Distancia máxima entre montantes verticales	Altura mínima de los montantes verticales
	nini	mm	nım
Tipo t	8	160	50
Tipo 2	12	160 y 80 respectivamente	80

Medidas en milimetros

Jornada divulgativa

Seguridad en fase de estructuras

Organiza:

Colabora:

RESISTENCIA CARACTERÍSTICA NOMINAL

$$R_{A,k} = 51.0 \frac{I_{\text{máx.}}}{I^2} \le 44.0 \text{ kN}$$
 (1)

$$R_{\rm B,k} = 68,0 \, \frac{I_{\rm max.}}{I^2} \le 51,0 \, \rm kN$$
 (2)

$$R_{C,k} = 102,0 \frac{I_{\text{máx.}}}{I^2} \le 59,5 \text{ kN}$$
 (3)

$$R_{D,k} = 34.0 \text{ kN}$$
 (4)

$$R_{E,k} = 51.0 \text{ kN}$$
 (5)

donde

 $R_{y,k}$ es la resistencia característica nominal para la clase de puntal y en kilonewtons;

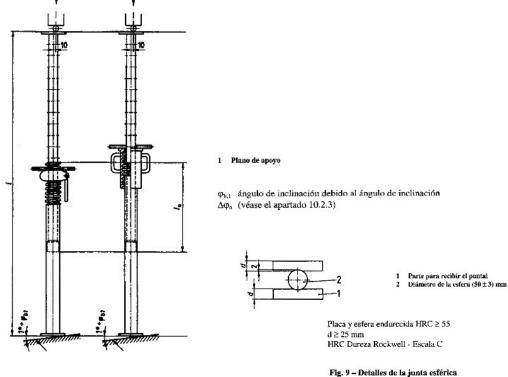
lmáx, es la longitud de extensión máxima en metros;

l es la longitud de extensión real en metros.

Jornada divulgativa

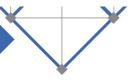
Seguridad en fase de estructuras

Organiza:



VERIFICACIÓN RESISTENCIA POR CÁLCULO

1 Plano de aplicación de la curga 2 Plano de soporte o apoyo X D₁=D+2×t D Mapring Anoma = -0,25×D Reball = -0,50×D Reball = -0,50


VERIFICACIÓN RESISTENCIA POR CÁLCULO

Flg. 6 - Modelo estructural para la verificación de la resistencia característica real

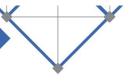
Jornada divulgativa

Seguridad en fase de estructuras

Organiza:

Colabora:

DEFINICIÓN


Deben soportar además de su peso propio, las sobrecargas de ejecución (encofrado, operarios, acopios, vibrado de hormigón, etc...) y la carga horizontal debida a viento, imperfecciones, excentricidades, etc...

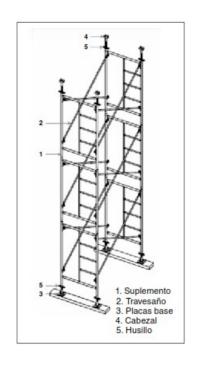
Transmiten la carga al suelo o una estructura. La superficie de apoyo deberá tener una resistencia suficiente para soportar la solicitud de cargas que recibe.

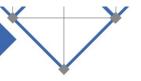
CLASIFICACIÓN

En función de su tipología, características técnicas o cargas que pueden absorber, se clasifican en 3 categorías:

Seguridad en fase de estructuras

)rganiza:




CLASIFICACIÓN

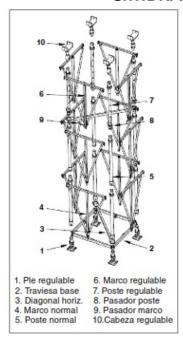
CIMBRA LIGERA PARA EDIFICACIÓN

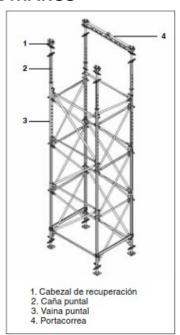
- -Capacidad de carga < 25 kN por pie
- -Para edificación cuando no aplica puntal
- -Habitual con encofrados tipo mecano
- -Uso recomendado H≤ 14m y losa ≤ 40 cms.

Seguridad en fase de estructuras

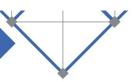
Organiza

Colabora:




CLASIFICACIÓN

CIMBRA DE CARGA MEDIA

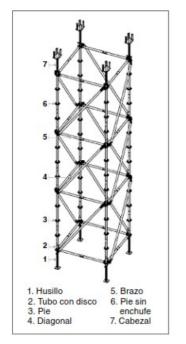

- -Capacidad de carga entre 30 y 80 kN pie
- -Para edificación y obra civil
- -Habitual con encofrados de vigas / aluminio
- -Aplicable a múltiples alturas y espesores losa

CIMBRAS DE MARCO

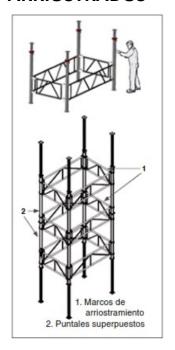
Seguridad en fase de estructuras

Organiz

Colabora:



CLASIFICACIÓN


CIMBRA DE CARGA MEDIA

- -Capacidad de carga entre 30 y 80 kN pie
- -Para edificación y obra civil
- -Habitual con encofrados de vigas / aluminio
- -Aplicable a múltiples alturas y espesores losa

CIMBRA MULTIDIRECCIONAL

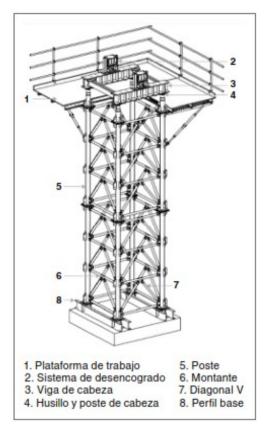
CIMBRA PUNTALES ARRIOSTRADOS

Jornada divulgativa

Seguridad en fase de estructuras

Organiza:

Colabora:



CLASIFICACIÓN

CIMBRA GRAN CARGA OBRA CIVIL

- -Capacidad de carga hasta 1200 kN por pie
- -Para viaductos o apeos gran carga
- -Habitual con encofrados especiales
- -Aplicable a múltiples alturas

Seguridad en fase de estructuras

Organiza:

UTILIZACIÓN. CLASES DE DISEÑO

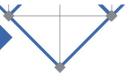
El sistema está recomendado siempre que la altura o la carga a soportar sean elevadas o se deban soportar esfuerzos horizontales. En general, los puntales no superan los 6 m de altura.

Según UNE-EN 12812:2008 las clases de diseño son A y B.

El expediente técnico incluirá planos y detalles más importantes. Se incluirá también los ensayos o cálculos de la cimbra así como sus instrucciones técnicas de montaje y desmontaje.

4- MEDIDAS DE PREVENCIÓN Y DE PROTECCIÓN

CARACTERÍSTICAS CONSTRUCTIVAS


DISEÑO Y CONSTRUCCIÓN

- -Cálculo de su resistencia en ELU y ELS para cada caso de carga según UNE-EN 12812.
- -Establecer arriostramientos y fijaciones.

MATERIALES

- -Características controladas. En suelos irregulares o poco resistentes, colocar durmientes.
- -En el caso de grandes cargas o cuando la geometría o resistencia del suelo así lo exija, el constructor es responsable de elaborar un informe geotécnico y de dimensionar la cimentación correspondiente.

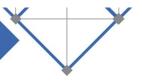
Seguridad en fase de estructuras

Organiza

CARACTERÍSTICAS CONSTRUCTIVAS

CONEXIONES ENTRE ELEMENTOS

- -Diseñadas para evitar su desconexión accidental en fase de trabajo.
- -De calidad controlada y responder a UNE-EN 74.


RIGIDEZ O ESTABILIDAD A VUELCO

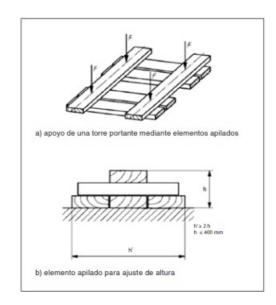
-Debe tener arriostramiento para garantizar su estabilidad.

AMARRES

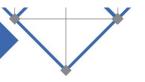
-Cuando el terreno tiene gran inclinación o la carga que soporta no es perpendicular a la base de la cimbra. Deberán unirse a puntos firmes.

Seguridad en fase de estructuras

Organiza


CARACTERÍSTICAS CONSTRUCTIVAS

APOYO DE LA ESTRUCTURA


-Los soportes de la cimbra deben garantizar la admisión de las cargas transmitidas por ella.

Terreno: Comprobar sea compacto y estable Estructura: Comprobar su capacidad de carga

-Con durmientes comprobar su estabilidad lateral.

Seguridad en fase de estructuras

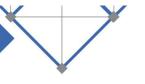
Organiza:

Colabora:

1- MEDIDAS DE PREVENCIÓN Y DE PROTECCIÓN

SEGURIDAD EN EL MONTAJE Y DESMONTAJE

Recomendaciones para cada fase de montaje de la cimbra:


FSTUDIO PREVIO

-Comprobar cimbra sea acorde con el proyecto a ejecutar, que sean correctas las alturas y las condiciones del terreno, así como asegurar se disponga de todos los equipos de seguridad.

DIRECCIÓN Y TRABAJADORES DEL MONTAJE, DESMONTAJE O TRANSFORMACIÓN

- -Dirección por persona que conozca en profundidad el procedimiento de trabajo y cuente con la formación preventiva mínima de nivel básico.
- -Los trabajadores han de haber recibido una formación adecuada y específica para este trabajo.

Seguridad en fase de estructuras

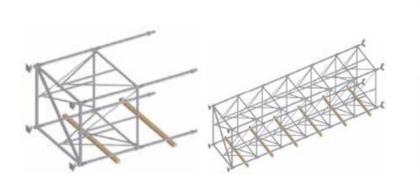
SEGURIDAD EN EL MONTAJE Y DESMONTAJE

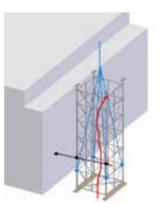
MONTAJE EN VERTICAL CON PLATAFORMAS DE MONTAJE

Jornada divulgativa

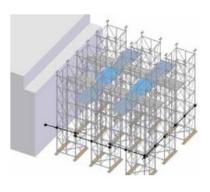
Seguridad en fase de estructuras

Organiza

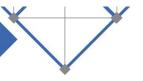

Colabora:



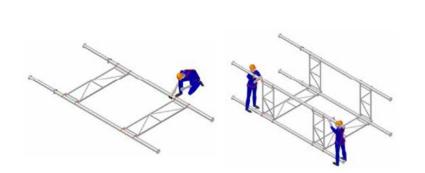


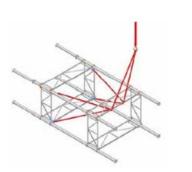

SEGURIDAD EN EL MONTAJE Y DESMONTAJE

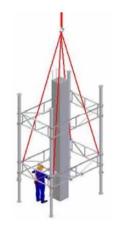
MONTAJE EN HORIZONTAL



Jornada divulgativa Seguridad en fase de estructuras

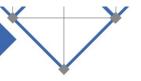

Colabora:





SEGURIDAD EN EL MONTAJE Y DESMONTAJE

MONTAJE CON PUNTALES ALUMINIO ARRIOSTRADOS



Seguridad en fase de estructuras

Organiza

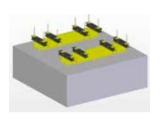
Colabora:

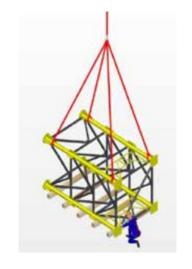
SEGURIDAD EN EL MONTAJE Y DESMONTAJE

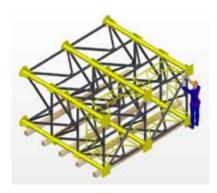
MONTAJE CON MULTIDIRECCIONAL

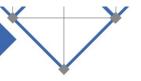
Seguridad en fase de estructuras

Organiza


Colabora:


SEGURIDAD EN EL MONTAJE Y DESMONTAJE

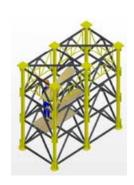

MONTAJE DE GRAN CARGA PARA OBRA CIVIL



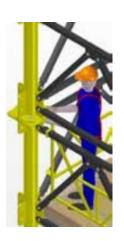
Seguridad en fase de estructuras

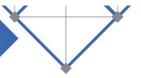
Organiza

Colabora:



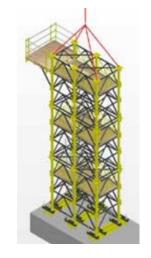
SEGURIDAD EN EL MONTAJE Y DESMONTAJE

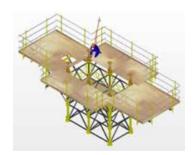

MONTAJE DE GRAN CARGA PARA OBRA CIVIL



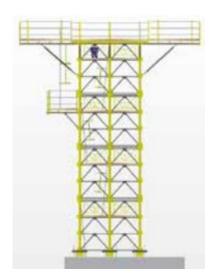
Jornada divulgativa Seguridad en fase de estructuras

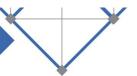
Colabora:





SEGURIDAD EN EL MONTAJE Y DESMONTAJE


MONTAJE DE GRAN CARGA PARA OBRA CIVIL



Jornada divulgativa

Seguridad en fase de estructuras

Colabora:

SEGURIDAD EN EL MONTAJE Y DESMONTAJE

MÉTODO OPERATIVO DE DESMONTAJE

DESCIMBRADO

- Previo al desmontaje de la cimbra se produce la descarga de la estructura (descimbrado):
- Se iniciará cuando la dirección de la obra estime que el elemento sustentado ya tiene suficiente resistencia estructural propia y de acuerdo al plan establecido.
- Antes de iniciar el proceso se revisará el acotado de la zona y se limitará el acceso a la zona de trabajo.
- Se realizará de forma suave y uniforme.

DESMONTAJE DE CIMBRAS

- El desmontaje de cada cimbra debe tener su instrucción técnica de desmontaje correspondiente.
- El desmontaje se realizará en orden inverso al seguido en la secuencia de montaje, teniendo en cuenta las siguientes particularidades:
- Se irá eliminando el material sobrante colocado sobre la cimbra antes de iniciar el desmontaie.
- El desmontaje se realizará nivel a nivel por completo, sin modificar los niveles inferiores.
- Se deberán aflojar las cuñas y desmontar los elementos uno a uno, en orden descendente ayudándose de plataformas intermedias, siempre sujetos los operarios con arnés de doble cuerda, y formando una cadena humana con los operarios encima de plataformas para que ningún elemento se deje caer.
- No se desmontarán nunca varios elementos a la vez, pues existe el riesgo de desestabilizar la estructura y porque el peso podría ser excesivo y provocar lesiones dorsolumbares a los trabajadores, o caídas por desequilibrio.
- Se garantizará un punto fijo para la colocación del arnés en todo momento.
- Las medidas de prevención que hay que tener en cuenta al desencofrar son:
- · Replegar los cabezales y retirar las vigas.
- Las vigas nunca se deben dejar caer, al desencofrar se bajarán sujetas con eslingas correctamente anudadas y con la ayuda de un equipo de elevación o maquinillo hasta el suelo o la planta donde vayan a ser reutilizadas convenientemente suietos.

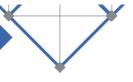
El mismo proceso se realizará con la superficie encofrante.

Jornada divulgativa

Seguridad en fase de estructuras

Organiza:

Colabora:



RECOMENDACIONES DE SEGURIDAD EN LA UTILIZACIÓN

DURANTE LA UTILIZACIÓN

- -Acceso a zona de trabajo por las zonas habilitadas a tal efecto.
- -Suspensión de trabajos en caso de lluvia, nieve o viento superior a 65 km/h.
- -No trabajar sobre plataformas situadas en distintos niveles o no protegidas.
- -No utilizar andamios de borriquetas u otros elementos auxiliares sobre niveles de trabajo para ganar altura.

Seguridad en fase de estructuras

Organiza

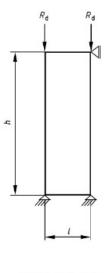
OBJETO Y APLICACIÓN

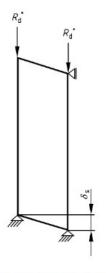
Describe diferentes clases de diseño:

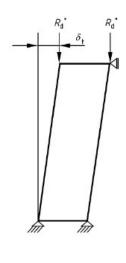
- -Clase A. Elementos comprobados individualmente que tengan utilización estándar (tablas de uso y manuales generales, sin requerir cálculos ni ensayos específicos), con límites:
 - -Losas con sección transversal ≤ 0.30 m² por metro de anchura de losa
 - -Vigas con sección transversal ≤ 0.50 m²
 - -Luz libre de vigas y losas ≤ 6 m
 - -Altura ≤ 3.50 m
- -Clase B. Elementos que requieren un análisis como estructura. Se divide en subclase B1 y B2 según metodología de diseño.
 - **B1- Método completo**
 - **B2- Método simplificado**

Seguridad en fase de estructuras

Organiza:



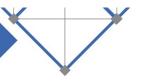



REQUISITOS DE DISEÑO

- -Elementos de acero o aluminio. Espesor nominal ≥ 2mm.
- -Conexiones no puedan desconectarse involuntariamente.
- -Flexibilidad. Una torre de carga prefabricada debe tener una capacidad de diseño, $R_{\rm d}^*$, del 90% de su capacidad normal de sustentación de carga, $R_{\rm d}$, cuando se haya impuesto un asentamiento diferencial, $\delta_{\rm s}$, o cuando un movimiento térmico haya causado un movimiento horizontal, $\delta_{\rm t}$, el cual debe absorber la torre.

$$\delta_s = 2.5 \times 10^{-3} \times I \le 5 \text{ mm}$$

 $\delta_t = \delta_s \times h/I$



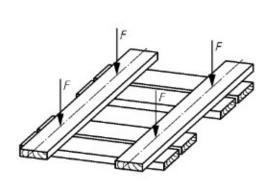
a) Sistema teórico b) Asentamiento diferencial

c) Movimiento térmico

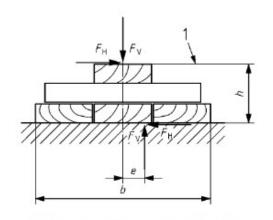
Seguridad en fase de estructuras

Organiza:

Colabora:

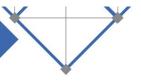


REQUISITOS DE DISEÑO


-Cimientos. Apoyos sobre terreno o estructuras existentes.

Si se utilizan durmientes, se consideran un punto horizontal arriostrado si cumple:

$$e = \frac{F_{\text{H}} \cdot h}{F_{\text{V}}} \le \frac{b}{6}$$
 $h \le 40 \text{ cm}$



a) apoyo de una torre portante mediante elementos apilados

b) elemento apilado para ajuste de altura

Seguridad en fase de estructuras

Organiza:

Colabora:

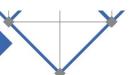

ACCIONES

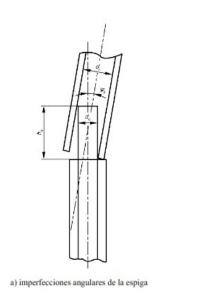
Tabla 1 - Factores de combinación de carga w

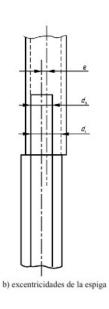
			Factores de c	Factores de combinación ψ				
Acción	Tipo de acción	Caso de carga 1	Caso de carga 2	Caso de carga 3	Caso de carga 4			
	Acciones directas				s,			
Q_1	Acciones permanentes	1,0	1,0	1,0	1,0			
Q_2	Acciones variables impuestas verticales permanentes	0	1,0	1,0	1,0			
Q_3	Acciones variables impuestas horizontales permanentes	0	1,0	1,0	0			
Q_4	Acciones variables impuestas horizontales	0	1,0	0	0			
Q_5	Viento máximo	1,0	0	1,0	0			
	Viento de servicio	0	1,0	0	0			
Q_6	Acciones por flujo de agua	0,7	0,7	0,7	0,7			
Q_7	Efectos sísmicos	0	0	0	1,0			
	Acciones indirectas			34	165			
0	Temperatura	0	1,0	1,0	1,0			
$Q_{8,i}$	Asentamientos		0	1,0	1,0			
	Pretensado		0	1,0	1,0			
Q_9	Otras condiciones de carga	0	1,0	1,0	1,0			

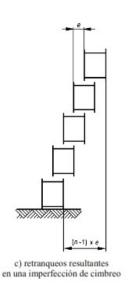
Jornada divulgativa

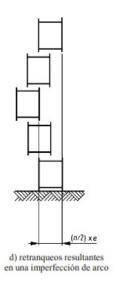
Seguridad en fase de estructuras

Organiza:


Colabora:






CÁLCULO ESTRUCTURAL CLASES B1y B2

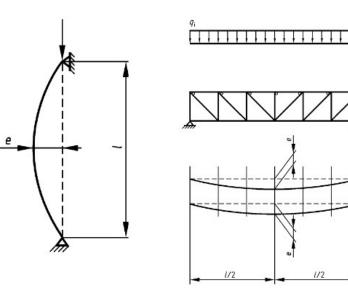
IMPERFECCIONES Y CONDICIONES CONTORNO

Jornada divulgativa

Seguridad en fase de estructuras

Organiza:

Colabora:

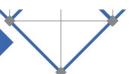


IMPERFECCIONES Y CONDICIONES CONTORNO

-Imperfecciones de cimbreo

a) elemento único b) torre modular completa c) torre modular independiente

-Imperfecciones de arco



a) Alzado de una columna apuntalada

b) Alzado y planta de una viga en celosía simplemente apoyada

Jornada divulgativa

Seguridad en fase de estructuras

Organiza:

Colabora:

CÁLCULO FUERZAS INTERNAS

- -Clase B1- De acuerdo a normas europeas o internacionales.
- -Clase B2- Se aceptan simplificaciones.

VALORES CARACTERÍSTICOS DE RESISTENCIA Y FRICCIÓN

ANEXO B- COEFICIENTES DE ROZAMIENTO

Tabla B.1 - Coeficientes de rozamiento, µ, para varias combinaciones de materiales

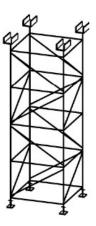
	Combinación de materiales de construcción	Coeficiente de	rozamiento μ
	Combinación de materiales de construcción	Máximo	Mínimo
1	Madera/madera – Superficie de rozamiento paralela a la veta o perpendicular a la veta	1,0	0,4
2	Madera/madera – al menos una superficie de rozamiento perpendicular a la veta (veta de madera transversal o en el extremo)	1,0	0,6
3	Madera/acero	1,2	0,5
4	Madera/hormigón	1,0	0,8
5	Acero/acero	0,8	0,2
6	Acero/hormigón	0,4	0,3
7	Acero/capa de mortero	1,0	0,5
8	Hormigón/hormigón	1,0	0,5

Jornada divulgativa

Seguridad en fase de estructuras

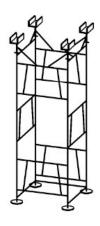
Organiza:

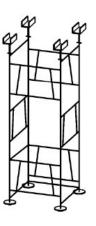
Colabora:


OBJETO Y APLICACIÓN

Métodos para establecer datos estructurales de rigidez y resistencia por medio de cálculos basados en ensayos.

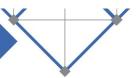
Torres trianguladas completamente





b) con husillos sin arriostrar

Torres no trianguladas completamente



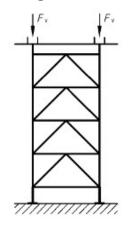
b) con husillos sin arriostrar

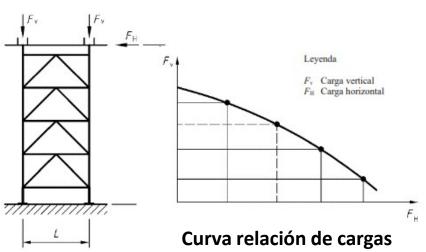
Jornada divulgativa

Seguridad en fase de estructuras

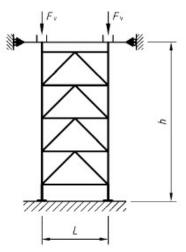
Organiza:

Colabora:

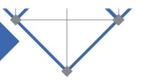



MÉTODOS ANÁLISIS PARA RESISTENCIA DE UNA TORRE

CASOS A REALIZAR- Tres juegos de cargas


Sin carga horizontal

Con carga horizontal



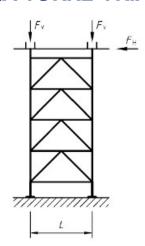
Arriostrada en parte superior

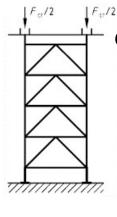
Jornada divulgativa

Seguridad en fase de estructuras

Organiz

Colabora:





MÉTODOS ANÁLISIS PARA RESISTENCIA DE UNA TORRE

ANÁLISIS DE PRIMER ORDEN- Incluyendo pandeo ANÁLISIS DE SEGUNDO ORDEN

ANEXO A (Informativo)- PROCEDIMIENTO ANÁLISIS DE PRIMER ORDEN DE UNA TORRE TRIANGULADA COMPLETAMENTE

Carga crítica de pandeo

Se considera la torre con una carga vertical de diseño $F_{\rm vd}$ y una carga horizontal de diseño $F_{\rm Hd}$, aplicadas simultáneamente (se puede generar una tabla de relación de cargas).

Jornada divulgativa

Seguridad en fase de estructuras

Orga

Colabora:

ANEXO A (Informativo)- PROCEDIMIENTO ANÁLISIS DE PRIMER ORDEN DE UNA TORRE TRIANGULADA COMPLETAMENTE

Verificar para los componentes más desfavorables $S_d \le R_d$

$$S_{\rm d} \le R_{\rm d} = \frac{f_{\rm y\;nom}}{\gamma_{\rm M}}$$
 (clase B1)

$$S_{\rm d} \le R_{\rm d} = \frac{f_{\rm y \, nom}}{\gamma_{\rm M} \times 1,15}$$
 (clase B2)

donde

 $f_{y \text{ nom}} = \text{tensión de fluencia}$

y_M = coeficiente parcial del material

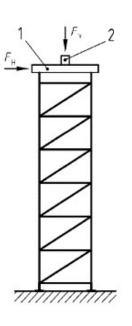
R_d = valor de diseño de la resistencia

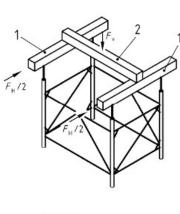
S_d = valor de diseño de los efectos de las acciones

Jornada divulgativa

Seguridad en fase de estructuras

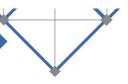
Organiza





ANEXO B (Normativo)- PROCEDIMIENTO DE ENSAYO GLOBAL

- -Carga preliminar ≤ 5% de la carga de fallo.
- -Carga posterior progresiva hasta llegar a la carga máxima o hasta que falle por la deformación de un componente o de la torre.
- -Los incrementos de carga deberían ser normalmente del 10% de la carga de fallo; cuando la aparición del fallo sea inminente, son más apropiados pequeños incrementos.
- -En cada etapa se registran la carga y los desplazamientos.



Levenda

viga primaria
 viga de carga

Seguridad en fase de estructuras

Organiz

Colabora:

CLASIFICACIÓN DE LAS ACCIONES

Tabla 2.2-Clasificación cargas de construcción

			Clasific	ación			
Apartado en esta norma	Accion	Variación en el tiempo	Clasificación/ origen	Variación espacial	Naturaleza	Observaciones	Fuente
4.11	Personal y herramientas manuales	Variable	Directo	Libre	Estática		
4.11	Almacenamiento de equipos móviles	Variable	Directo	Libre	Estática/ Dinámica	Dinámica en el caso de caída de elementos.	EN 1991-1-1
4.11	Equipos no permanentes	Variable	Directo	Libre/Fija	Estática/ Dinámica		EN 1991-3
4.11	Maquinaria y equipos pesados móviles	Variable	Directo	Libre	Estática/ Dinámica		EN 1991-2, EN 1991-3
4.11	Acumulación de materiales de deshecho	Variable	Directo	Libre	Estática/ Dinámica	Puede afectar, por ejemplo, a elementos verticales.	EN 1991-1-1
4.11	Cargas de partes de la estructura en fases provisionales	Variable	Directo	Libre	Estática	Se excluyen los efectos dinámicos	EN 1991-1-1

Tabla 2.1-Clasificación acciones (diferentes de la carga de construcción)

			Clasifica	ción			
Apartado en esta norma	Acción	Variación en el tiempo	Clasificación/ origen	Variación espacial	Naturaleza (estática/ dinámica)	Observaciones	Fuente
4.2	Peso propio	Permanente	Directo	Fijo con tolerancia/ Libre	Estática	Libre durante el transporte/ almacenamiento. Dinámico en caso de caída	EN 1991-1-1
4.3	Movimiento del terreno	Permanente	Indirecto	Libre	Estática		EN 1997
4.3	Presión del terreno	Permanente/ Variable	Directo	Libre	Estática	Variable para cálculo local (anclaje)	EN 1997
4.4	Pretensado	Permanente/ Variable	Directo	Fijo	Estática		EN 1990, EN 1992 a EN 1999
4.5	Predeformaciones	Permanente/ Variable	Indirecto	Libre	Estática		EN 1990
4.6	Temperatura	Variable	Indirecto	Libre	Estática		EN 1991-1-5
4.6	Retracción y efectos de la hidratación	Permanente/ Variable	Indirecto	Libre	Estática		EN 1992, EN 1993, EN 1994
4.7	Acciones del viento	Variable/ Accidental	Directo	Fijo/Libre	Estática/ Dinámica	(*)	EN 1991-1-4
4.8	Acciones de nieve	Variable/ Accidental	Directo	Fijo/Libre	Estática/ Dinámica	(*)	EN 1991-1-3
4.9	Acciones causadas por el agua	Permanente/ Variable/ Accidental	Directo	Fijo/Libre	Estática/ Dinámica	Permanente/ Variable en función de las especificaciones del proyecto. Dinámica en corrientes de agua si fuera relevante.	EN 1990
4.10	Cargas por hielo atmosférico	Variable	Directo	Libre	Estática/ Dinámica	(*)	ISO 12494
4.12	Accidental	Accidental	Directo/ Indirecto	Libre	Estática/ Dinámica	(*)	EN 1990, EN 1991-1-7
4.13	Sismo	Variable/ Accidental	Directo	Libre	Dinámica	(*)	EN 1990 (4.1), EN 1998

Jornada divulgativa

Seguridad en fase de estructuras

Organiza:

CARGAS DE CONSTRUCCIÓN

Tabla 4.1-Representación carga de construcción

		Cargo	as de Construcción (Q _c)			
	Acc	iones	Representación	Notas y observaciones		
Tipo	Símbolo	Descripción	Representación	Notas y observaciones		
Personal y herramientas de mano	Q _{ca}	Personal de obra, plantilla y visitantes, posiblemente con herramientas de mano y otros equipos ligeros	Representada como carga uniformemente distribuida, $q_{\rm ca}$, y aplicada de forma que se obtenga el efecto más desfavorable	NOTA 1 El valor característico q _{cak} de la carga uniformemente distribuida se pueden definir en el anexo nacional correspondiente o para cada proyecto particular. NOTA 2 El valor recomendado es 1,0 kN/m². Véase también el apartado 4.11.2		
	Acc	iones	Representación	Notas y observaciones		
Tipo	Símbolo	Descripción	Representation	rotas y observaciones		
Acopio de material móvil	Q_{cb}	Acopio de material móvil, por ejemplo: – elementos prefabricados, material de construcción y – equipos.	Representada como una acción libre, y debería representarse como: - una carga uniformemente repartida q_{ch} - una carga concentrada F_{ch}	NOTA 3 Los valores característicos de la carga uniformemente repartida y de la carga concentrada se pueden definir en el anexo nacional correspondiente o para cada proyecto particular. Para puentes se recomiendan los siguientes valores: - q _{cb,k} = 0,2 kN/m ² - F _{cb,k} = 100 kN donde F _{cb,k} se puede aplicar sobra un área nominal para el cálculo de los detalles constructivos. Para los valores de las densidades de los		

Equipamiento no permanente	Q_{cc}	Equipos no permanentes listos para su uso durante la ejecución, o bien: - estática (por ejemplo paneles de encofrado, andamiaje, cimbra, maquinaria, contenedores); o - durante el movimiento (por ejemplo encofrado deslizante, vigas de lanzamiento, nariz de corrimiento, contrapesos).	Representada como carga libre, y debería representarse como: – una carga uniformemente repartida q_{ee}	NOTA 4	Estas cargas pueden definirse para el proyecto particular usando la información proporcionada por el suministrador. A no ser que haya disponible información más precisa, las cargas pueden modelarse con una carga uniformemente repartida con un valor característico minimo recomendado de q _{eck} = 0,5 kN/m ² . Se dispone de un rango de códigos de diseño de CEN; por ejemplo, véase la Norma EN 12811, y para el diseño de encofrados y cimbras, véase la Norma EN 12812.
Maquinaria y equipos pesados móviles	$Q_{\rm cd}$	Maquinaria y equipos pesados móviles, habitualmente con ruedas o vías (por ejemplo, grúas, elevadores, vehículos, carretillas elevadoras, instalaciones eléctricas, gatos, dispositivos de elevación pesados)	Debería representarse según la información dada en las partes relevantes de la Norma EN 1991, a no ser que se especifique de otro modo.	acciones p encontrars define en La inform acciones s	ación para la determinación de las producidas a los vehículos puede se en la Norma EN 1991-2, si no se la especificación del proyecto. Lación para la determinación de las relativas a las grúas se da en la N 1991-3.

Jornada divulgativa

Seguridad en fase de estructuras

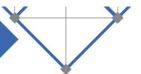
Organiza:

Colabora:

CARGAS DE CONSTRUCCIÓN

Tabla 4.1-Representación carga de construcción

Acumulación de material de deshecho	Q_{ee}	La acumulación de material de deshecho (por ejemplo materiales de construcción excedentes, suelos excavados o material de demolición).	Se tiene en cuenta considerando los posibles efectos de masa en elementos horizontales, inclinados y verticales (como paredes).	NOTA 5	Estas cargas pueden variar significativamente y en cortos periodos de tiempo, dependiendo en los tipos de materiales, las condiciones climáticas, el ritmo de acumulación y demolición, por ejemplo.
	Acc	iones	Representación	N	iotas y observaciones
Tipo	Símbolo	Descripción	representation	-	ottas y observaciones
Cargas de partes de una estructura en fase temporal	$Q_{\rm ef}$	Las cargas de partes de una estructura en fase temporal (en ejecución) antes de que actúen las acciones de proyecto finales (por ejemplo las cargas de operaciones de elevación)	Se tiene en cuenta y representa de acuerdo con las secuencias de ejecución previstas, incluyendo las consecuencias de esas secuencias (por ejemplo los efectos de las cargas y las reacciones a las cargas, debidas a procesos particulares de construcción, como montaje)	cuerdo con las cargas adicionales debidas al hormigón fresco le casa ele casa rejamplo los argas y las cargas, sos	


Tabla 4.2-Valores característicos carga de construcción durante el hormigonado

Acción	Área cargada	Carga en kN/m²		
(1)	Fuera del área de trabajo	0,75 correspondiente a Q_{cs}		
(2)	Dentro del área de trabajo 3 m x 3 m (o la luz si es menor)	10% del peso propio del hormigón pero menor que 0,75, ni mayor que 1,5 Incluye Q_{ca} y Q_{cf}		
(3)	Área real	Peso propio del encofrado, el equipamiento no permanente (Q_{∞}) y el peso del hormigón fresco para el espesor de cálculo (Q_{cf})		
	2 3 1	2 3 1		

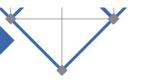
(2) Se deberían tener en cuenta las acciones horizontales del hormigón fresco.

Jornada divulgativa

Seguridad en fase de estructuras

Organiza:

Colabora:



ANEXO A1 (Normativo)- REGLAS ADICIONALES PARA EDIFICIOS ANEXO A2 (Normativo)- REGLAS ADICIONALES PARA PUENTES

ANEXO B (Informativo)- ACCIONES EN ESTRUCTURAS DURANTE MODIFICACIÓN, RECONSTRUCCIÓN O DEMOLICIÓN

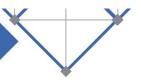
Organiza

OTRAS NTP ENCOFRADOS

NTP 803 ENCOFRADO HORIZONTAL: Protecciones colectivas (I)

NTP 804 ENCOFRADO HORIZONTAL: Protecciones colectivas (II)

NTP 816 ENCOFRADO HORIZONTAL: Protecciones individuales contra caídas de altura


NTP 834 ENCOFRADO VERTICAL: Pilares y muros a una y dos caras (I)

NTP 835 ENCOFRADO VERTICAL: Pilares y muros a una y dos caras (II)

NTP 836 ENCOFRADO VERTICAL: Sistemas trepantes (I)

NTP 837 ENCOFRADO VERTICAL: Sistemas trepantes (II)

Seguridad en fase de estructuras

Organiza:

